
Возможности микробиологической диагностики в многопрофильном стационаре в расшифровке этиологии и патогенеза инфекционных заболеваний в условиях нарастания резистентности микроорганизмов

ДГКБ № 9 им Г.Н.Сперанского Главный врач — д.м.н., профессор А.А.Корсунский Заведующая лабораторией Е.В.Галеева

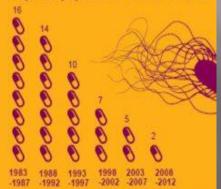
- □ Коечный фонд -840
- Инфекционных коек-390
- Хирургических коек-280
- Терапевтических -170
- Реанимационных коек-30(в том числе 18 неонатальных)
- В 2016 году пролечено 53 170 пациентов
- Лабораторные исследования Всего 3 257 887

Распределение пациентов по нозоологии ДГКБ № 9 им Г.Н. Сперанского 2016

Антимикробная резистентность угроза национальной безопасности

Антимикробная резистентность (АМР) феномен устойчивости штамма возбудителей инфекции к действию одного или нескольких антибактериальных препаратов 1

Ежегодно в Европе АМР приводит к


2 049 442 заболеваниям

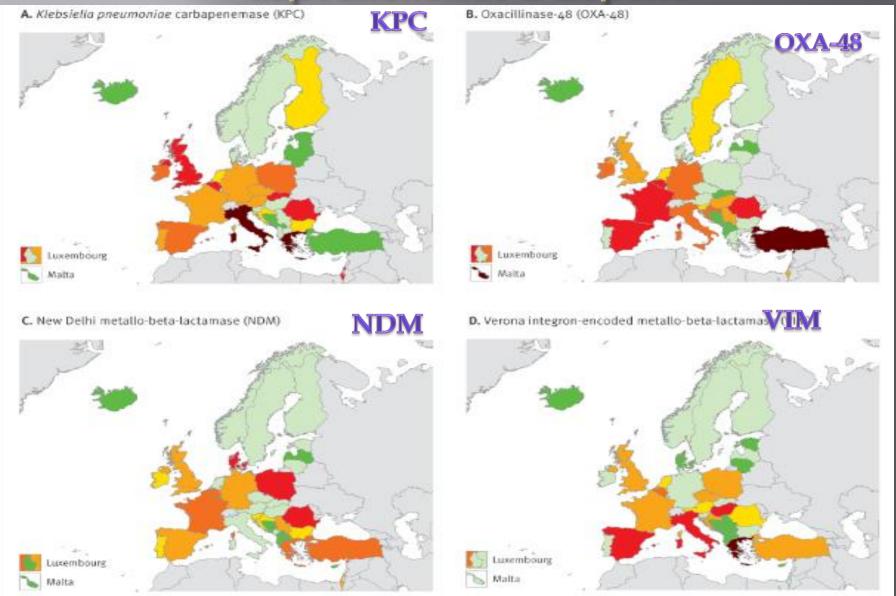
25 ТЫС. смертей

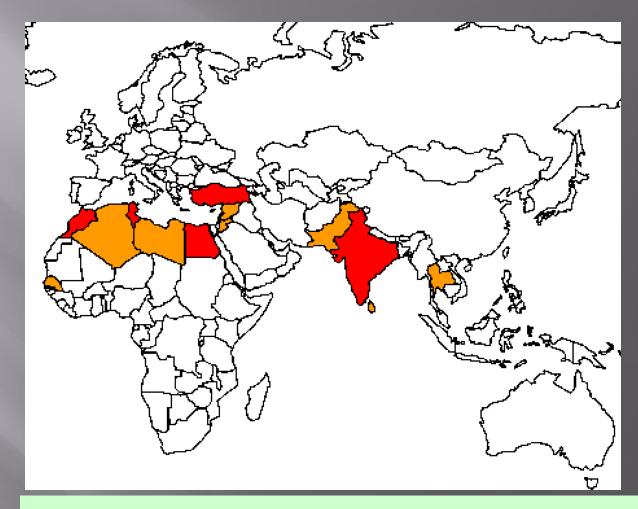
2.5 МЛН дополнительных

Причины формирования антимикробной резистентности в России

- √ Недостаточный уровень микробиологической
- Отсутствие государственной системы регистрации нозокомиальных и множественно устойчивых инфекций
- ✓ Недостаточная взаимосвязь между микробиологическими лабораториями и клиническими врачами
- √ Отсутствие адекватных мер инфекционного контроля и недостаточное их соблюдение
- Огромное число генериков антимикробных препаратов при отсутствии должного контроля их качества
- √ Бессистемное и нерациональное применение антимикробных препаратов

«Устойчивость к антибиотикам не является больше прогнозом на будущее; она имеет место уже сейчас, во всем мире, и ставит под угрозу способность лечить распространенные инфекции на уровне отдельных сообществ и в больницах».


Оценка серьезности угроз резистентности нозокомиальных и внебольничных патогенов (CDC, 2013)


- Microorganisms with a Threat Level of Urgent
- Clostridium difficile
- CarbapenemresistantEnterobacteriaceae
- Drug-resistant
 Neisseria gonorrhoeae.

Microorganisms with a Threat Level of Serious.

- Enterobacteriaceae (ESBLs)
- • MDR *Acinetobacter*
- Pseudomonas aeruginosa
- Enterococcus (VRE)
- Staphylococcus aureus (MRSA)
- **■** *Candida* Флюк-Рез
- Campylobacter
- Streptococcus pneumoniae
- Salmonella
- Shigella
- Tuberculosis

Распространение основных карбапенемаз в Европе

Areas of (putative) OXA-48 endemicity

Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases Lancet Inf Dis 2013

L Silvia Munoz-Price, Laurent Poirel, Robert A Bonomo, Mitchell J Schwaber, George L Daikos, Martin Cormican, Giuseppe Cornaglia, Javier Garau, Marek Gniadkowski, Mary K Hayden, Karthikeyan Kumarasamy, David M Livermore, Juan J Maya, Patrice Nordmann, Jean B Patel, David L Paterson, Johann Pitout, Maria Virginia Villegas, Hui Wang, Neil Woodford, John P Quinn

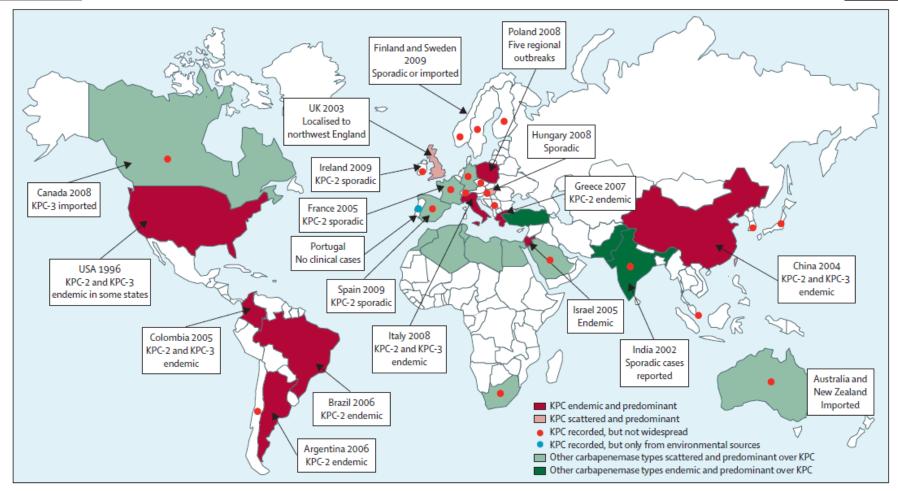


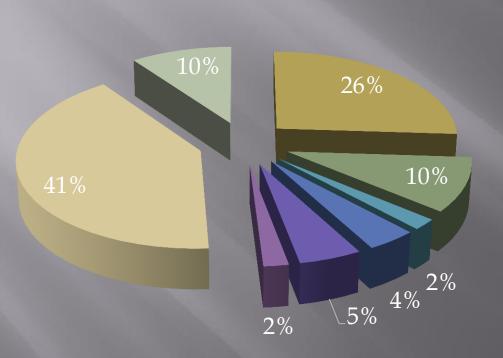
Figure: Epidemiological features of producers of Klebsiella pneumoniae carbapenemases by country of origin Other carbapenemase types include VIM, OXA-48, or NDM. KPC=Klebsiella pneumoniae carbapenemase.

Локальный контроль за резистентностью

- Необходимо иметь локальные данные по резистентности (паспорт резистентности)
- □ Особенно! в отделениях с высокой частотой применения АМП
- □ Сведения о резистентности следует приводить дифференцированно, по различным отделениям и микроорганизмам.
- **при регулярно, минимум один раз в год, обновлять.**
- Должна быть определена методология определения чувствительности к АМП в каждом конкретном ЛПУ
- Необходимо знать преобладающие механизмы резистентности, что важно для выбора рациональной терапии

Микробиологическая лаборатория

- Микробиологическая лаборатория играет ключевую роль как в обосновании этиотропной терапии инфекционных болезней у отдельных пациентов, так и в формировании стратегии и тактики использования антимикробных средств в рамках стационара.
- Важность получаемых в микробиологической лаборатории результатов выдвигает жёсткие требования к их достоверности
- □ Достоверность результатов исследований обеспечивается системой менеджмента качества и выполнением требований к качеству и компетентности микробиологических лабораторий, которые определяются Национальным стандартом Российской Федерации ГОСТ Р ИСО-15189-2006 (Лаборатории медицинские. Частные требования к качеству и компетентности) и должен являться основным документом, регламентирующим организацию работы в лаборатории


Обеспечение Качества: Контроль и стандартизация

- **Контроль качества** определения чувствительности
- Внутренний (внутрилабораторный)- регулярное определение чувствительности контрольных (коллекционных) штаммов и сопоставление результатов с диапазонами допустимых значений (МПК или диаметр зон подавления роста), а также контроль питательных сред.
- Внешняя оценка качества- Федеральная Система Внешней Оценки Качества (ФСВОК), раздел «Клиническая микробиология»
- **©** Стандарты
- Клинические рекомендации «Определение чувствительности микроорганизмов к антибактериальным препаратам» Версия 2015-2 (раздел 3.10)
- EUCAST (пересматриваются ежегодно) <u>www.eucast.org</u>
- CLSI (пересматриваются ежегодно)

Микробиологические исследования

ДГКБ №9 им Г.Н. Сперанского 2016г

- пной
- моча
- пиквор
- груд молоко
- кровь
- мокрота,БАЛ
- кал
- капельные инф

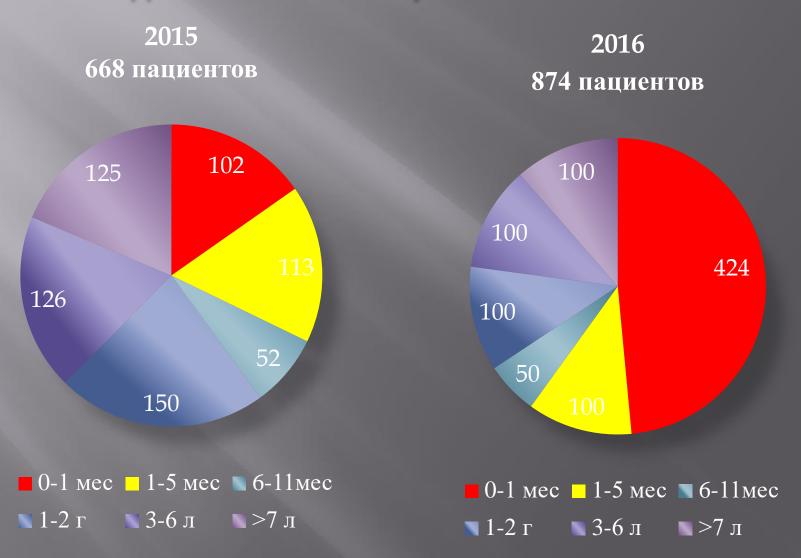
Приготовление, посев, культивирование

СЕГОДНЯ

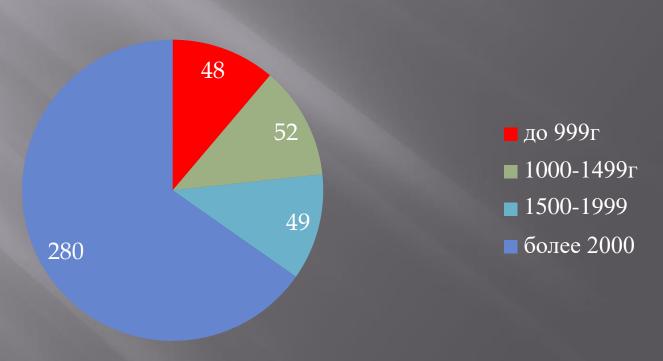
ГЕМ; СРЕДОФФ;БИОМЕДИА

Автоматизация в микробиологии: непозволительная роскошь или осознанная необходимость?

Автоматизация, стандартизация, оптимизация - реальность


- Биологическая защита персонала
- Возможность оперативного контроля
- исключается путаница образцов/чашек
- исключаются ошибки условий инкубации
- Возможность дистанционного просмотра чашек: телебактериология
- □ Повышается
 достоверность,
 скорость, надежность —
 адекватная терапия и
 блгагополучный исход.

Распределение пациентов ИОРИТ по возрасту


ДГКБ №9 им. Г.Н.Сперанского - 2015 -2016

доля маловесных и недоношенных детей 2016гг среди новорожденных, госпитализированных в ИОРИТ

ДГКБ №9 им. Г.Н.Сперанского - 2016

Основная патология пациентов ИОРИТ раннего возраста (до 6 мес)

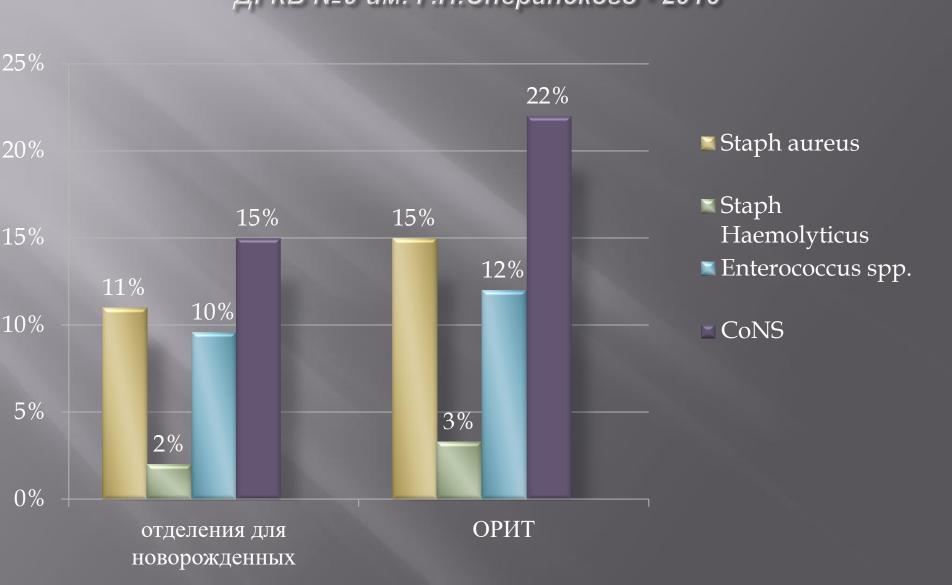
ДГКБ №9 им. Г.Н.Сперанского - 2016

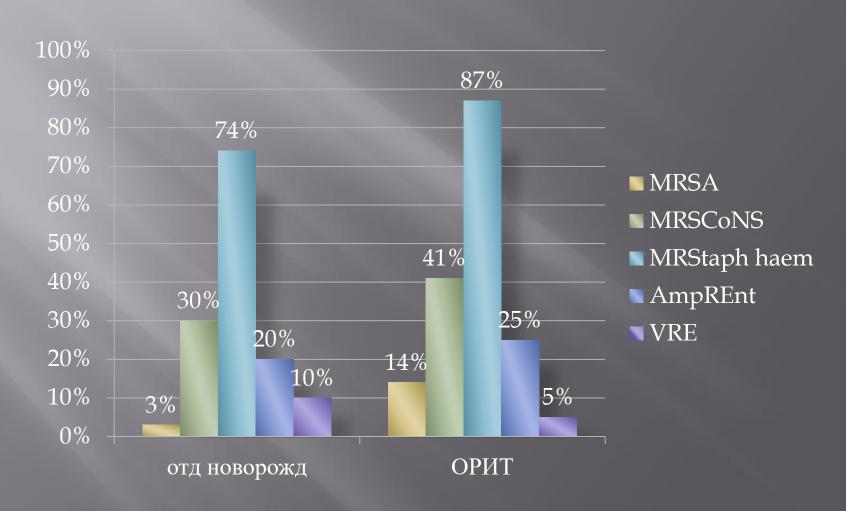
число пациентов 525


Пациенты ОРИТ имеют высокий риск нозокомиальной инфекции

- □ Пациенты в ОРИТ инфицированны нозокомиальными бактериями, Pseudomonas aeruginosa и Acinetobacter baumannii, чаще, чем в других отделениях (Donowitz et al., 1982).
- □ Способствуют инфицированию в ОРИТ:
- основное заболевание пациента,
- длительность госпитализации,
- частота контактов с медицинским персоналом,
- количество колонизированных/инфицированных пациентов в окружении,
- инвазивные процедуры и медицинское оборудование (катетеры, интубационные трубки, дыхательные контуры....),
- отсутствие следования действующим рекомендациям по профилактике инфекции (Siegel et al., 2007).

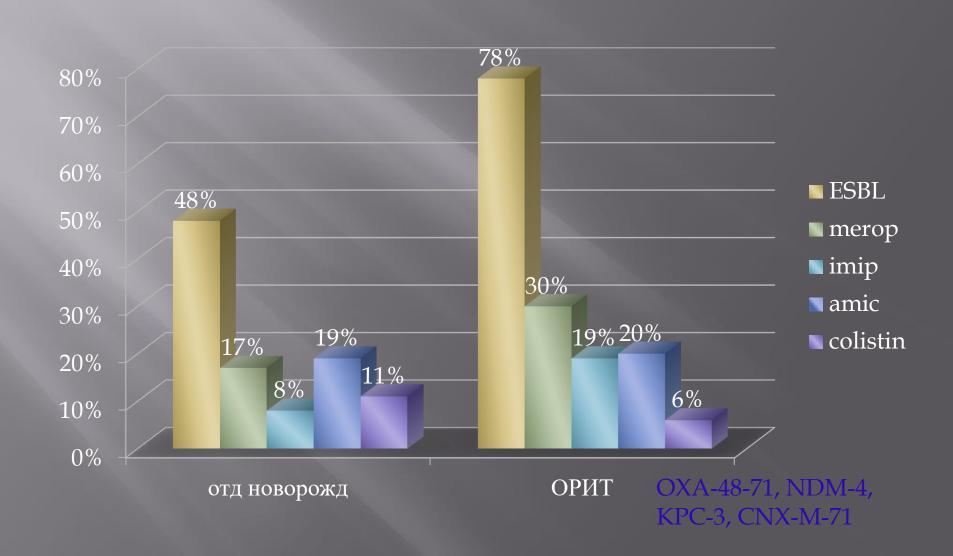
"ESKAPE"


- Enterococcus faecium VRE
- Staphylococcus aureus MRSA
- Klebsiella pneumoniae KPC
- Cinetobacter baumanii MDR
- Pseudomonas aeruginosa MDR
- Enterobacteriaceae ESBL


Грам «-» бактерии

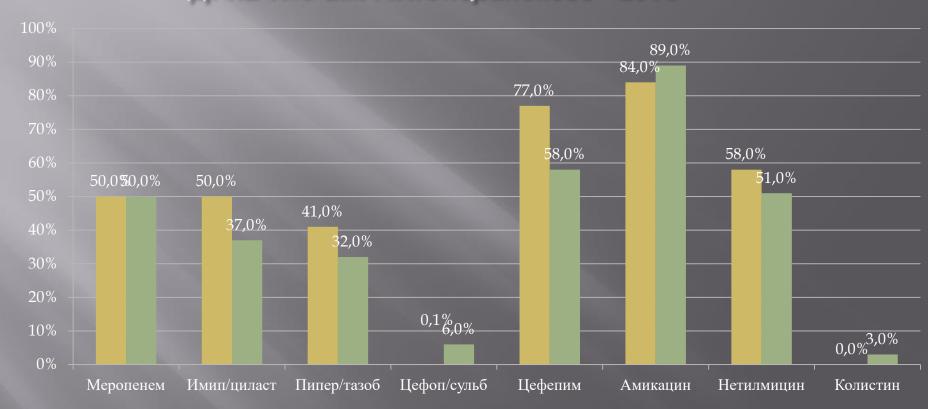
- + Clostridium difficile
- + Candida spp.
- + Cons

Ведущая Гр+ Микрофлора отделений новорожденных и иорит ДГКБ №9 им. Г.Н.Сперанского - 2016


Резистентность Гр+ Микрофлоры отделений новорожденных и иорит ДГКБ №9 им. Г.Н.Сперанского - 2016

Ведущая Гр- Микрофлора отделений новорожденных и оритиОРИТ ДГКБ №9 им. Г.Н.Сперанского - 2016

Резистентная К.pneumoniae пациентов отделений новорожденных и и ОРИТ 9 им. ДГКБ №Г.Н.Сперанского -2016


Резистентность ps. Aeruginosa отделений новорожденных и иОРИТ

ДГКБ №9 им. Г.Н.Сперанского - 2016

Резистентность Ac. baumannii ИОРИТ

ДГКБ №9 им. Г.Н.Сперанского - 2016

NDM-1;NDM,OXA48,CTX-M-1;KPC,CTX-M-1

Выбор метода определения чувствительности

- □ ДДМ+Е тесты
- Автоматизированный + Е тесты
- Автоматизированный + ДДМ

«В настоящее время большинство лабораторий предпочитают пользоваться двумя методами, особенно при использовании автоматических систем... Преимуществом использования двух методов является возможность проверки необычных результатов определения чувствительности...»

_G.Kahlmeter, J.Turnidge

Когда нужно определять МПК

- Характер заболевания (эндокардит, сепсис, менингит)
- □ Микроорганизм/антибиотик
- S.pneumoniae/пенициллин
- Зеленящий стрептококк/пенициллин
- Staphylococcus spp/ванкомицин
- Enterococcus spp/ванкомицин промежуточный результат
- Enterobacteriaceae/карбапенемы
- Микроорганизмы: Neisseria spp, Haemophilus spp, Hellicobacter pylori, анаэробы, грибы, микобактерии

Непрерывное культивирование Bactec, BacT/Alert, VersaTREK ДГКБ 9 им Г.Н. Сперанского

в 30% при пневмонии; 50% при сепсисе

Диагностика Сепсиса

Экспресс диагностика:

- Прокальцитонин в крови количественно в динамике
- Иммунохроматографический тест на выявление АГ <u>Str. Pneumoniae и</u> <u>L.pneumophilla в моче</u>
- Латекс-тест на выявление в крови антигена: Str. pneumoniae, H.influenzae mun b, N.meningitidis группа A, группа B/E.coli K1, группа C, группа Y/W135, Str. группы B agalactiae.
- ДНК(РНК) ПЦР вирусов, бактерий, грибов
- Детекция карбапенемаз (NDM,VIM,KPC,OXA-48); ESBL(CTX-M); mecA.
- Серологическое исследование (определение антител к возбудителям)
- КЩС
- Биохимический анализ крови(Белковые фракции, белки острой фазы.
 др)
- Бактериологический посев крови с коротким субкультивированием, СМЖ, мочи
- Иммунологический анализ крови.

Алгоритм короткого субкультивирования ID

MALDI-TOF MS ID

- Посев крови
- Инкубация, детекция и высев из положительного флакона на питательную среду
- Гр- палочки

(Ac.baumanii;Kl.pneumoniae;E.coli; S.marcescens)

Среднее время до ID- 3,5ч Контроль- зрелые культуры через 24 часа

□ Гр+ кокки
 (S.epidermidis, E.faecium)
 Среднее время до ID- 4ч
 Контроль- зрелые культуры через 24 часа

VITEK2

- Используется пробирка с разделительным гелем. 8,5мл
- □ Центрифугируем на 2000g10мин
- Количество колоний в конечном инокулянте приблизительно 5х10⁵ КОЕ на мл.
- Выливаем супернатант
- Осуществляем забор осадка на границе гель-супернатант
- □ Достигаем концентрации 0,5МсF и заполняем панели.
- Контроль- зрелые культуры через 24 часа

S.pneumoniae

- Невозможность определения чувствительности к беталактамам (пенициллинам, аминопенициллинам, ЦС, карбапенемам) ДДМ
- Скрининг с диском 1мкг ОХ
- □ Диаметр зоны <20мм
- Определение МПК пенициллина и других беталактамов Е-тестами
- МПК Р для менингитов-S<0,06 R>0,06
- МПК Р для не менингит-S< 0,06 R> 2

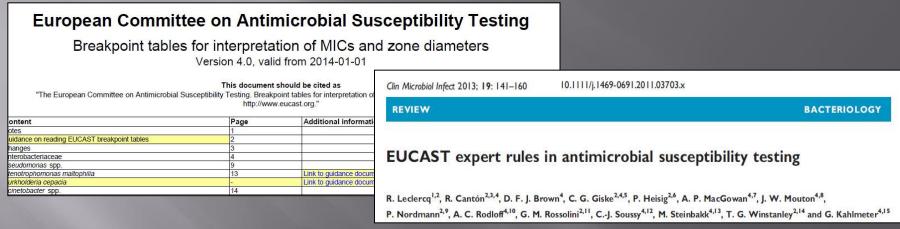
Рост резистентности к пенициллину, макролидам, респираторным фторхинолонам

S. aureus -выявление MRSA (цефокситин) хромогенные сред S.aureus и Ent.spp E-тест к Va

S.aureus u CNS

КОАГУЛАЗОНЕГАТИВНЫЕ СТАФИЛОКОККИ (CNS)

- Различные критерии оценки чувствительности для S.aureus и CNS
- Скрининговый тест не рекомендуется для CNS
- DDT с цефокситином обладает большей специфичностью(выше корреляция с наличием mecA) для CNS


ОКСАЦИЛЛИН И ЦЕФОКСИТИН

МПК оксациллина	S	R
S. aureus n S. lugdunensis	≤ 2 мг/л	> 2 мг/л
CNS	≤ 0,25 мг/л	> 0,25 мг/л
Ø зоны цефокситина	S	R
S. aureus и S. lugdunensis	≥ 22 mm	< 22 мм
CNS	≥ 25 MM	< 25 мм

Определение MRSA детекция гена mecA с помощью молекулярных методов

ОБНОВЛЕНИЕ РОССИЙСКИХ НАЦИОНАЛЬНЫХ РЕКОМЕНДАЦИЙ ПО ОПРЕДЕЛЕНИЮ ЧУВСТВИТЕЛЬНОСТИ К АМП

На основе пограничных значений МПК и интерпретационных правил EUCAST (EUCAST Clinical breakpoints v.4.0 & EUCAST Expert rules v.2.0)

- Гармонизация ≠ копирование
- Использование альтернативных рекомендаций (CLSI, BSAC,..) и мнений международных экспертов <u>для отдельных комбинаций МО-антибиотик с</u> учетом национальных особенностей:
 - номенклатуры зарегистрированных и используемых АМП
 - эпидемиологии резистентности

КРИТЕРИИ ОЦЕНКИ ЧУВСТВИТЕЛЬНОСТИ РЕГУЛЯРНО ОБНОВЛЯЮТСЯ

- Учет только категорий чувствительности (S, I, или R) не позволяет сравнивать данные, полученные с использованием различных критериев!
- > Значения МПК, выраженные в виде (≤ X) или (>Y мг/л) часто также нельзя оценивать

Пограничные значения МПК (мг/л) для Enterobacteriaceae

	Россия (МУК 4.2-2004)	США (CLSI-2014)	Европа (EUCAST-2014)
Антибиотик	S R	S R	S R
Цефотаксим	≤8 ≥64	≤1 ≥4	≤1 >2
Цефтазидим	≤8 ≥32	≤4 ≥16	≤1 >4
Цефепим	≤8 ≥32	≤2 ≥16	≤1 >4
Имипенем	≤4 ≥16	≤1 ≥4	≤2 >8
Меропенем	≤4 ≥16	≤1 ≥4	≤2 >8
Эртапенем	≤2 ≥8	≤0,5 ≥2	≤0,5 >1

Management of KPC Bacteremia

Remove CVC if CVC-correlated BSI Treat for at least 14 days

...and call ID consultant...

MIC meropenem <16

COLISTIN ev (9 MU loading dose, then 4.5 MU q12h)
TIGECYCLIN (200 mg loading dose, then 100 mg q12h)

MEROPENEM high dose (2g in 1 h, then 2 g every 8 hours in 6 h) TDM-based

MIC meropenem >16

COLISTIN ev

+

TIGECYCLIN

GENTAMICINA
3mg/kg/day single dose,
TDM-based

АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ ИСПОЛЬЗУЮТ МОДИФИЦИРОВАННЫЙ МЕТОД МИКРОРАЗВЕДЕНИЙ

⊕BD

Недостатки автоматизированных систем

- Фиксированный набор антибиотиков
- Невозможность тестирования всех клинически значимых бактерий
- Ограниченный диапазон разведений антибиотиков
 - Метод тестирования пограничных концентраций позволяет установить категорию чувствительности (в соответствии с жестко заданными критериями!), но не точное значение МПК
 - $M\Pi K \le 2 \ (????) \ M\Pi K > 8 \ (????)$
- Не всегда можно выявить резистентные штаммы
- Относительно высокая стоимость тестирования
- Зависимость от поставок расходных материалов

Грам(-) бактерии

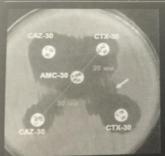
Антибактериальные препараты	GN4F	RUGNF	RUNBF
Диапазон разведений, мкг/мл			
Ампициллин	8-16	8-16	
Ампициллин/Сульбактам 2:1	4-16	4/2-16/8	
Тикарциллин/Клавуланат (2 мкг/мл)	8-64	8-64	2-32
Пиперациллин	16-64		
Пиперациллин/Тазобактам (4 мкг/мл)	8-128	8-128	2-32
Цефазолин	1-16		
Цефуроксим		4-32	
Цефоперазон		16-64	
Цефтазидим	1-16	1-16	1-16
Цефтриаксон	0,5-32	0.5-32	
Цефепим	4-32	4-32	1-16
Азтреонам	1-16	1-16	1-32
Имипенем	0,5-8	0.5-8	1-32
Дорипенем	0,5-4	0.5-4	
Меропенем	0,5-16	0.5-16	0,5-16
Эртапенем	0,25-4	0.25-4	
Гентамицин	2-8	2-8	0,5-16
Тобрамицин	2-8		0,5-16
Нетилмицин		2-32	0,5-16
Амикацин	8-32	8-32	1-32
Ципрофлоксацин	0,5-2	0,5-2	0,25-8
Левофлоксацин	1-8	1-8	1-8
Колистин		1-4	0,5-16
Полимиксин В			0,5-16
Триметоприм/Сульфаметоксазол 1:19	2-4	2-4	2-16
Тетрациклин	4-8	4-8	
Тайгециклин	1-8	1-8	
Фосфомицин			8-128
Нитрофурантоин	32-64	32-64	

Грам(+) бактерии

Антибиотики				
	RUSTEF	RUSPSF		
Диапазон разве	Диапазон разведений, мкг/мл			
Пенициллин		0,06-16		
Ампициллин	0,5-16	0,12-8		
Оксациллин + 2% NaCl	0,25-8			
Цефтриаксон		0,12-8		
Цефтаролин	0,12-8	0,12-4		
Эртапенем		0,12-16		
Ципрофлоксацин	0,25-8			
Левофлоксацин		0,25-8		
Моксифлоксацин		0,12-4		
Гентамицин	0,5-16			
Гентамицин HLAR	500			
Ванкомицин	0,5-16	0,25-4		
Эритромицин	0,25-8	0,12-4		
Клиндамицин	0,12-4	0,12-2		
Доксициклин	0,5-4			
Тетрациклин		1-8		
Тайгециклин	0,03-4			
Хлорамфеникол		2-16		

ПЕРВИЧНЫЙ СКРИНИНГ: ВЫЯВЛЕНИЕ ЭНТЕРОБАКТЕРИЙ - ВОЗМОЖНЫХ ПРОДУКЦЕНТОВ КАРБАПЕНЕМАЗ

Руководство EUCAST по выявлению механизмов резистентности


Carbapenem	MIC (mg/L)		Disk diffusion zone diameter (mm) with 10 μg disks	
	S/I breakpoint	Screening	S/I breakpoint	Screening cut-
		cut-off		off
Meropenem ¹	≤2	>0.12	≥22	<25 ²
lmipenem ³	≤2	>1	≥22	<23
Ertapenem ⁴	≤0.5	>0.12	≥25	<25

¹Best balance of sensitivity and specificity

²In some cases zone diameters for OXA-48-producers are up to 26 mm, so <27 mm may be used as a screening cut-off in countries where OXA-48 is endemic, but at the expense of lower specificity.

Достаточный минимум для практических лабораторий 40% ESBL

Метод «двойных дисков» для выявления ESBL

E. coli, K. pneumoniae, P. mirabilis: CAZ-30, CTX-30

Продуценты АтрС: Enterobacter, Citrobacter, Serratia, Morganella, Providencia: CAZ-30, FEP-30

K. oxytoca, P. vulgaris, P.penneri, C. koseri: CAZ-30

CAZ - цефтазидим СТХ - цефотаксим АМС – амоксициллин/клавуланат

> Методические рекомендаци KMAX 2001; 2(3):183-9

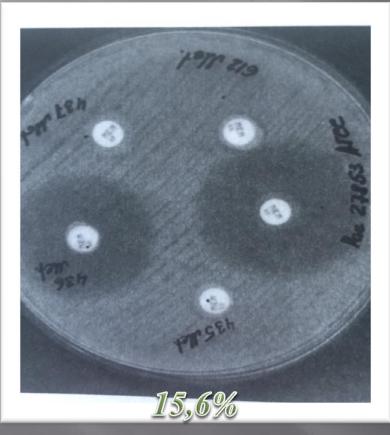
> > **НИИАХ**, 2015

Метод двойных дисков

Анализ эффективности выявления ESBL с помощью модифицированного метода двойных дисков

Результаты:

- Продукция ESBL выявлена у всех 43 контрольных штаммов (чувствительность 100%) во всех вариантах постановки теста
- > При использовании дисков с меньшей нагрузкой коррекция расстояния между дисками не требуется
- FEP может быть использован вместо СТХ для всех видов

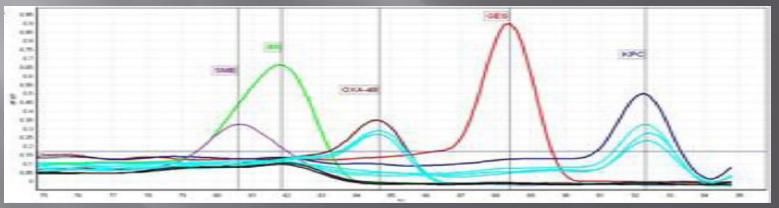

- CAZ цефтазидим FEP - цефепим
- АМС амоксициллин/клавуланат

- Контрольные штаммы coli ATCC 25922
- K/pneumoniae ATCC 700603
- Используются ночные культуры
- Суспензия по 0,5 ED McFarland
- Взвесь в 3х направлениях на MX
- Через 10мин нанести диски см на рис
- Инкубация 18-20ч при 35 С

Mcnontzobarrue duckob c меньшей нагрузкой ЦС CAZ 10

Метод инактивации карбапенемов CIM

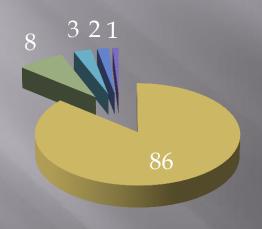
Нем карбапенемазчемкая зона задержки роста вокруг диска с МЕМ



- Приготовить суспкнзию исследуемого изолята(10мкл в 400 мкл деионизиров воды.Вортекс
- □ Погрузить диск с меропенемом
- Отриц контроль диск в 400мкл
 без культуры
- □ Инкубация 2ч 35С
- Суспензию 0,5ED McFarland
 Е/coli ATCC 25922 засеять в 3х направлениях на среду
 Мюллер-Хинтон.
- Диски из инкубируемых пробирок разместить на чашку.
- □ Инкубация 8 часов при 35С

Детекция генов карбапенемаз и СТХ-М с помощью ПЦР в реальном времени

- Мультиплекс MBL:
- 🗉 VIM группа
- IMР группа
- NDM группа
- ВЛ внутренний контроль


- Мультиплекс КРС/ОХА-48
- ОХА-48 группа
- ВЛ внутренний контроль

Inclination of the contraction o

Результаты детекции генов резистентности 2016-2017

ДГКБ № 9 им. Г.Н. Сперанского

OXA 48, CTX-M;

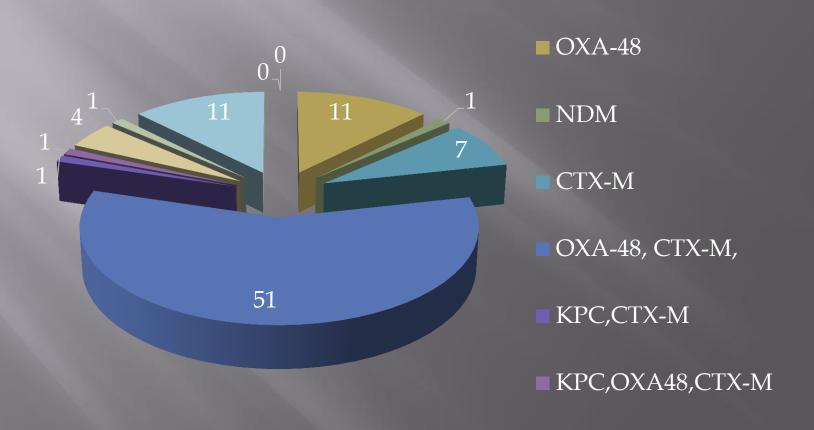
NDM, CTX-M; KPC,OXA48,CTX

-M

- K1.
 Pneumoniae
- P.aerugenos
- A.baumanii
- S.marseccens
- Kl. Oxytoca

Возможности терапии:

Комбинации!!!


- Тигециклина
- Полимиксина
- Меропенема и эртапенема

Обсуждается роль

фосфомицина

Гены резистентности Kl. Pneumoniae ДГКБ №9 им. Г.Н.Сперанского 2016-2017

Kl.pneumoniae n=88

Грибковые патогены ДГКБ № 9 им. Г.Н. Сперанского 2016

	Кол-во штаммов	Флук -R
Candida albicanc	40	0% (от28)
Candida non-albicans:	27	75%
Candida spp.	13	25%
Candida parapsilosis	8	50%
Candida guelliermondii	4	
Candida lusitaniae	1	
Candida glabrata	1	
Geotrichum spp.	1	
Actinomyces meyeri	1	
Aspergillus spp.	1	

Учитываем шкалу прогнозирования кандидоза Candida score

Возбудитель		Препарат выбора
C. albicans	Стабильное состояние	Флуконазол
C,parapsylosis	Стабильное состояние	Флуконазол
C.glabrata	Стабильное состояние МПК <32 мг\л	Флуконазол
C.glabrata	МПК >64 мг\л	Эхинокандины , ЛамВ
C.crusei		Эхинокандины , ЛамВ, Вориконазол

E-TECT/Sintititre

При нестабильном состоянии - препараты выбора - эхинокандины

Стартовая антибактериальная терапия

Схема А

Эмпирическая А/Б

терапия

Ампициллин+

Тентамицин

•Материнский анамнез не отягощен; •Отсутствие у матери флоры, резистентной к препаратам стартовой схемы а/б терапии;

<u>Схема Б</u>
<u>Эмпирическая А/Б</u>
<u>терапия</u>

Ампициллин/ сульбактам +/-

Амикацин

- •Материнский анамнез отягощен; •Отсутствие у матери
- флоры, резистентной к препаратам стартовой схемы а/б терапии;

Схема В
Целенаправлен ная
А/Б терапия
(согласно
чувствительности
высеваемой флоры)
•Наличие у матери
флоры,
резистентной к
препаратам
стартовой схемы а/б
терапии;

Возможности терапии нозокомиальных инфекций с MDR

- KPC
- > Mic merop <16 : колистин + тигециклин + меропенем
- Міс merop >16 : колистин + тигециклин + гента
- > Tgc-R: колистин + рифампицин +меропенем/гента
- > Col-R: тигециклин + рифампицин +меропенем/гента
- OXA-48
- «Суицидальная» комбинация эртапенема и меропенема +/колистин;
- NDM
- » колистин+фосфомицин (штаммы S и R к фосфомицину)
- > Азтреонам +/- цефтазидим/авибактам
- Продленные инфузии максимальных доз бета-лактамов
- Грам+ препараты выбора
- Ванкомицин и линезолид

Пути решения проблемы:

Микробиологический мониторинг входной и текущей микрофлоры, использование современных методов микробиологической диагностики.

	Скорость	Информативность
Выявление генов R	+	+
Определение МПК для наиболее значимых препаратов		+
Определение S к комбинациям а/б		+

- Рациональная АБ терапия (выбор препарата, дозы, режима и комбинации с учетом тяжести состояния ребенка, возраста, факторов риска)
- Контроль своевременной отмены а/б (соблюдение регламентированных сроков лечения в зависимости от нозологии, контроля маркеров ССВО прокальцитонин, СРБ).
- профилактика распространения внутри отделения внутри отд
- Совместное пребывание с матерью (для неонатальных пациентов)

ARCTIC OCEAN Dente Parer 15 Novick Pages Newton Cont. WANT HORT H LATLANTI NORTH PACIFIC ICIPIC Traple of Course | Califor OCEAN Standard Sundaride 17 OCEAN Obeletion L. J. Florenie IT POLY NAME OCEAN Country of Sand St. 18 Mary OCEAN TLANTI SOUTH PACIFIC O C E A N Court a Challen L Treas IT OFEAN Manganeric Lo BOUQUET Emorald L. S. Mattersto Supposed Anteretion Continues OF EAN 25% 895 250 356 FULL BLOOM Imagine Nations by Wendy Cold 2013