

Основы масс-спектрометрии и ее применение в клинической лабораторной диагностике

Дудкин П.Ю. - «Агентство Химэксперт»

Содержание

- Основы масс-спектрометрии
- Перспективы применения масс-спектрометрии в клинической лаборатории
- Обзор возможностей и применений

Наши достижения
 Преобразуем клинические исследования

Более точные результаты для охраны здоровья

Наши достижения Инновационные биомедицинские исследования

Помогаем ведущим врачам-онкологам проникнуть в тайны раковых заболеваний

Тандемная массспектрометрия для клинической диагностики

- Большой потенциал в повышении точности результатов и скорости выполнения анализов
- Снижение издержек в рутинной диагностике *in vitro*

АВ SCIEX представил первый массспектрометр для диагностики *In Vitro* в феврале 2013

Эволюция масс-спектрометрии в диагностике

На сегодняшний день

Интегрированное решение АВ SCIEX

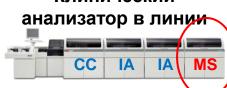
Специализированный клинический анализатор Включение в линию

Лабораторные тесты

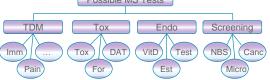
- Маркировка Class I и CE IVD (2a)
- Опытный персонал
- Загрузка партиями
- Меню ПО вызывается вручную

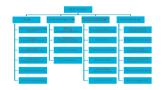
Нет меню тестов

Интегрированные системы, одобренные регулятором


- Class II (Высокая сложность)
- Автоматизированна я пробоподготовка
- Наборы реагентов
- Улучшенное ПО
- Меню тестов

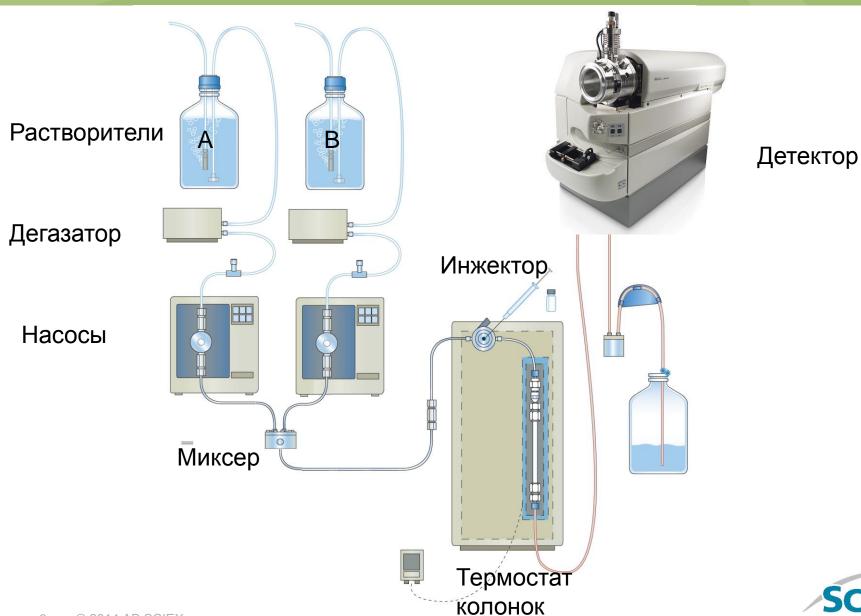
Клинический анализатор


- Средняя сложность, Class II
- Полностью автоматизированные процессы
- Коммуникация через ЛИС
- Обширное меню тестов


Клинический

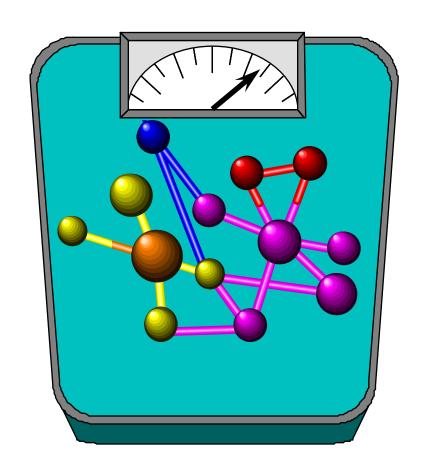
- Встраивание в модульный клинический анализатор
- Интеграция в ЛИС
- Средняя сложность Class II
- Полное меню валидированных и утвержденных тестов

Основы масс-спектрометрии



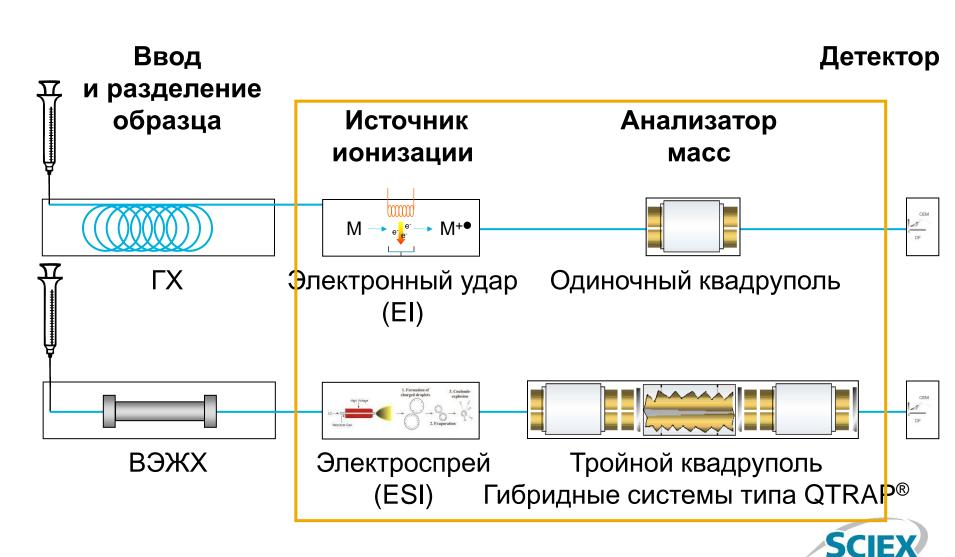
Преимущества тандемной масс-спектрометрии в сравнении с иммунохимическими методами

- Высокая селективность и специфичность
- Высокая чувствительность
- Простая пробоподготовка
- Короткое время выполнения анализа
- Возможность объединения разных классов аналитов в одном анализе
- Низкие издержки на один образец



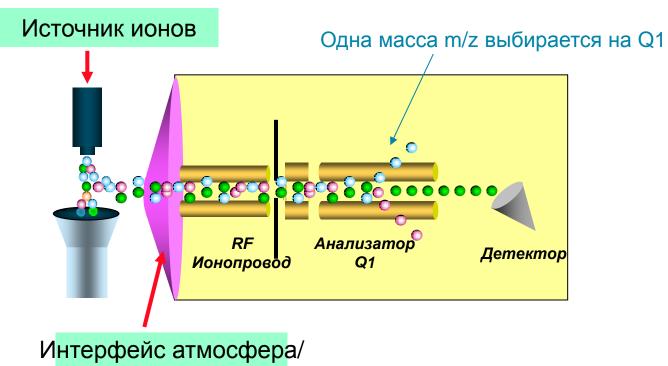
Жидкостной хроматограф

IVD-MKT-11-0769-A


Что такое масс-спектрометр?

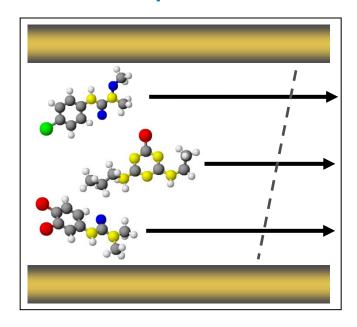
• Масс-спектрометр измеряет молекулярную массу вещества

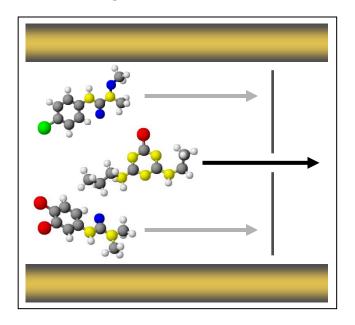
(технически, *отношение* массы к заряду, m/z)


Схематическое устройство ГХ/МС и ЖХ/МС/МС

Моноквадрупольные масс-спектрометры

- Аналиты ионизируются в источнике, затем попадают в анализатор масс
- Ионы одной массы m/z выбираются на квадрупольном анализаторе (Q1)
- Квадрупольный анализатор это фильтр масс

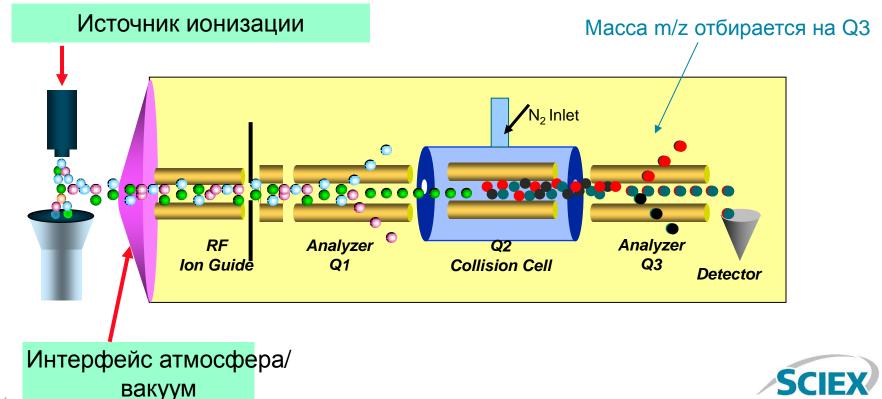

вакуум

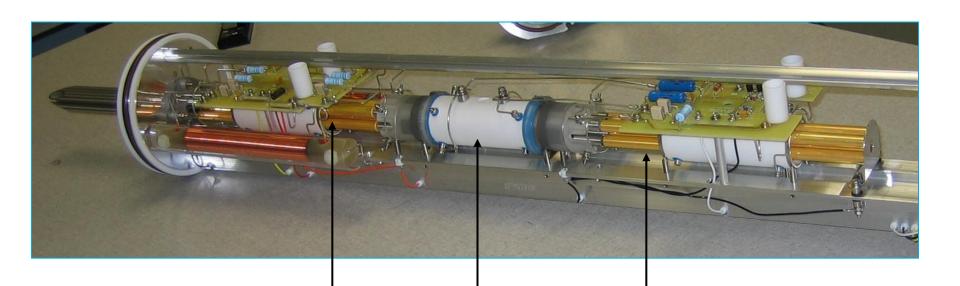

Типы сканирования

Сканирование в МС

Q1: Режим сканирования

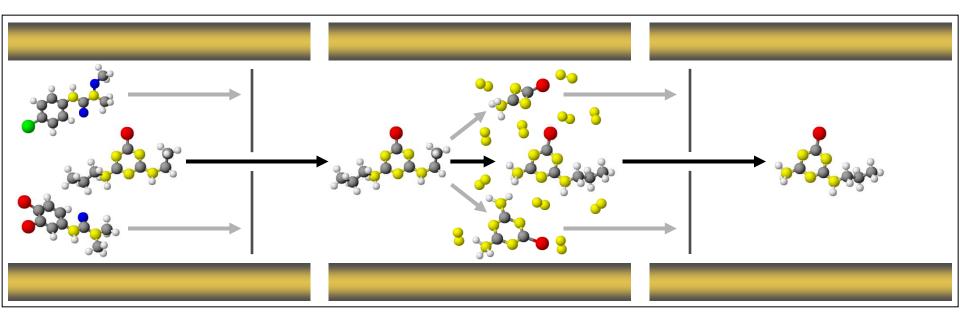
Мониторинг единичных ионов (SIM)




• Q1: Фильтр

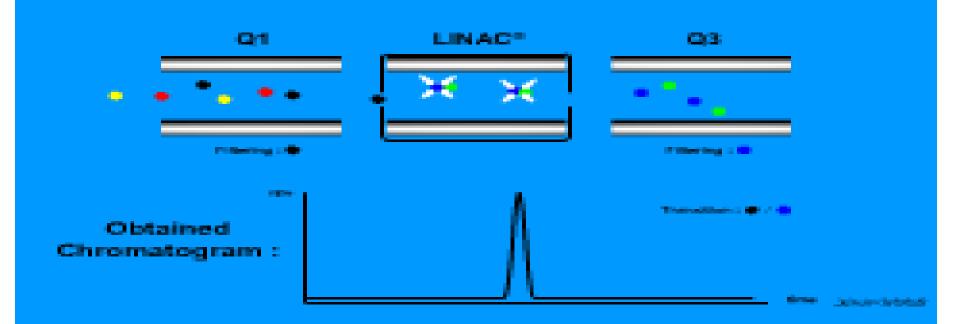
Тандемная масс-спектрометрия

- Ионы массы m/z фильтруются на квадруполе (Q1)
- Фрагментация в ячейке столкновений (Q2)
- Ионы массы m/z фильтруются на втором квадруполе (Q3)



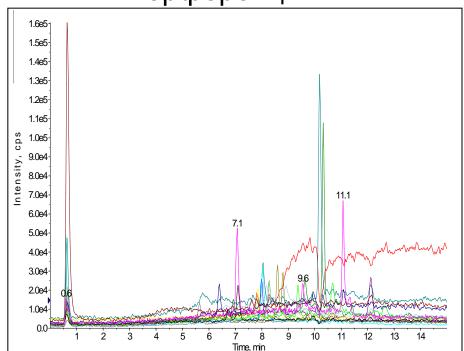
Коллизионая ячейка (Q2)

1^й набор квадрупольных стержней (Q1) 2^й набор квадрупольных стержней (Q3)


Типы сканирования – Мониторинг множественных реакций (MRM)

- Q1: Фильтр
- Q2: Фрагментация
- Q3: Фильтр
 - → Количественный анализ и целевой скрининг

Multiple Reaction Monitoring (MRM)



SIM vs. MRM

Мониторинг единичных ионов

- Низкая селективность
- Интерференции

Мониторинг множественных реакций

- Отличная селективность
- Отсутствие наложений

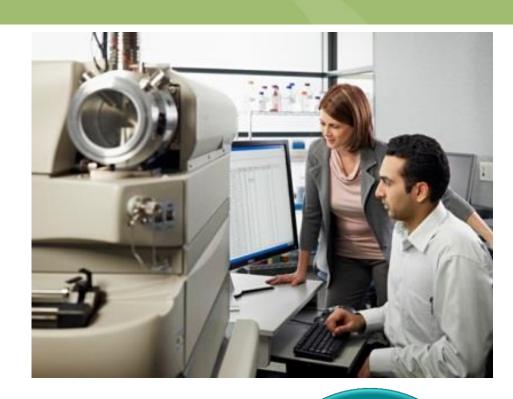
Золотой стандарт количественного

Применение масс-спектрометрии в клинической лаборатории

Задачи и проблемы клинических лабораторий

- Точность результатов
 - Ложно-положительные
 - Ложно-отрицательные
- Скорость выдачи результата
- Сложные образцы
- Большие объемы

Необходимость в высокой чувствительности и селективности для количественного и качественного анализа


Тандемная масс-спектрометрия – замена иммунохимических методов?

Основные проблемы применения	Применение ИФА	Применение масс- спектрометрии
Проблемы специфичности	Хорошо описанные проблемы кросс-реакций и наложений.	Детекция методом селекции масс позволяет добиться более надежных и достоверных результатов
Низкие пределы количественного анализа	ИФА тесты достигли своих пределов количественного определения	Селективность масс-спектрометра позволяет снизить пределы обнаружения и количественного анализа
Высокие издержки	Обычно высокая стоимость, особенно в случае применения индивидуальных тестов	Низкие эксплуатационные расходы и мультиплексный анализ позволяет снизить издержки
Дефицит антител (сложности с созданием новых тест-систем плюс длинный цикл разработки)	Долгое время разработки новых тестов	Не требует антител для разработки новых тестов

Что AB SCIEX может предложить для диагностики

- Решения, созданные для рутинных лабораторий
- Быстрые и точные результаты, отвечающие современным ожиданиям и требованиям
- Соответствие требованиям регуляторов

Приборы, которые можно использовать для анализа биологических образцов на следовые количества множества соединений в целях диагностики

Для IVD: Системы ЖX/MC/MC AB SCIEX API 3200MD™ и **3200MD QTRAP®**

Готовое решение для рутинной диагностики

Приборы

Анализатор SCIEX IVD-MS™ Системы API 3200MD™ и 3200MD QTRAP® Технологии QqQ и QTRAP

→

Решения для КДЛ

ПО

Analyst® MD Software Cliquid® MD Software

Поддержка клиентов

Инсталляция и обучение Поддержка по телефону и в лаборатории

Реагенты

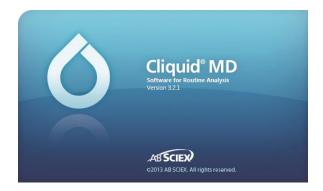
Наборы реагентов SCIEX IVD-MS™

Тандемная масс-спектрометрия:

Надежное оборудование + простое ПО= Экспертные результаты **Быстрое внедрение**

Для лабораторий, нуждающихся в новых технологиях для повышения скорости анализа, селективности и чувствительности результаты, которым можно доверять

Серия AB SCIEX 3200MD устанавливает новый стандарт надежного рутинного количественного анализа множественных аналитов клинической лабораторной диагностике.


Также доступна с уникальной функцией QTRAP®, позволяющей проводить одновременный количественный качественный анализ повышая таким образом уровень достоверности.

Понятный оператору интерфейс – ПО Cliquid® с поддержкой русского языка, также специализированная методическая и сервисная поддержка, 3200MD серии позволяет стать идеальной стартовой системой для КДЛ

ПО Cliquid® MD для рутинного анализа

- Идеально для любого рутинного количественного анализа
 - Защищенный вход пользователей
 - Упрощенные процессы управления анализом
 - Упрощенные инструменты обработки данных
 - Упрощенные инструменты выдачи отчетов на базе Microsoft Word с набором сконфигурированных шаблонов
 - Функции архирования
 - Поддержка русского языка

Обзор применений: Лекарственный мониторинг

Анализ иммуносупрессоров

Иммуносупрессоры - структура

Tacrolimus (aka FK-506) MW 822.0

Sirolimus (aka Rapamycin) MW 914.2

Everolimus MW 958.2

Cyclosporin A MW 1202.6

Преимущества тандемной масс-спектрометрии при анализе иммуносупрессоров

• Селективность:

- Отсутствие кросс-реакций и наложений
- Чувствительность
- Хорошая чувствительность в большом диапазоне концентраций
- Пробоподготовка
 - Минимальная пробоподготовка
 - Возможность автоматизации очистки образцов
 - Достаточно небольших количеств образца

• Точность:

- Достоверный и точный количественный анализ с использованием стандартов

• Гибкость

- Одновременное исследование нескольких препаратов
- Можно объединить с другими панелями исследований

Необходимое оборудование

- Тандемный масс-спектрометр
- Наборы для анализа иммуносупрессоров
- Микроцентрифуга 14000 rpm
- Пипетки 0-200 мкл и 0-1000 мкл
- Одноразовые наконечники
- Стандартная лабораторная посуда

Параметры анализа крови на иммуносупрессоры с использованием тандемного масс-спектрометра

Analyte	S/N	%CV	LLOQ (ng/mL)
Cyclosporin	435	3.9	1.6
Tacrolimus	20	7.2	1.3
Sirolimus	14	8.6	2.3
Everolimus	11	4.3	2.5

Анализ сухих пятен крови на аминокислоты и ацилкарнитины

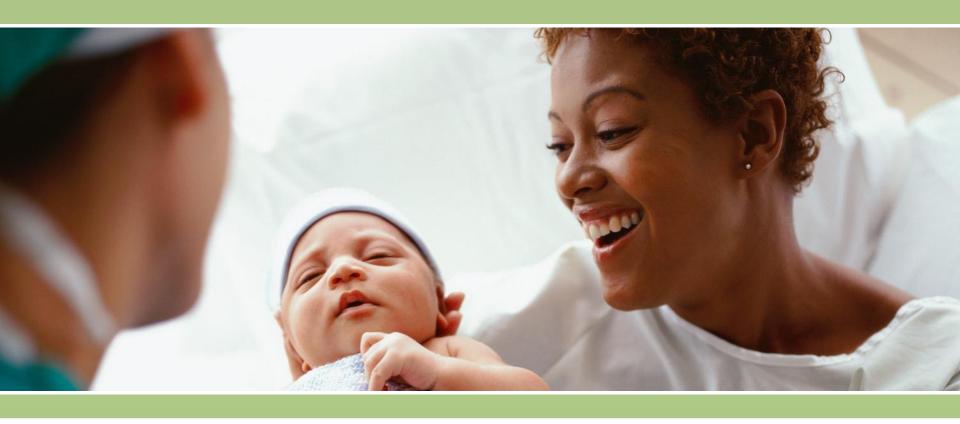
Анализ сухих пятен крови на аминокислоты и ацилкарнитины

Предназначен для рутинной количественного определения аминокислот и ацилкарнитинов с помощью системы <u>AB SCIEX 3200MD</u> Series.

- набор реагентов
- Данные для диагностики около 40 заболеваний, связанных с наследственными нарушениями обмена веществ полученные в результате анализа сухого пятна крови
- Простая конфигурация оборудования не требуется хроматографическое разделение

Пример отчета о выполнении теста на аминокислоты и ацилкарнитины (с маркировкой отклонений)

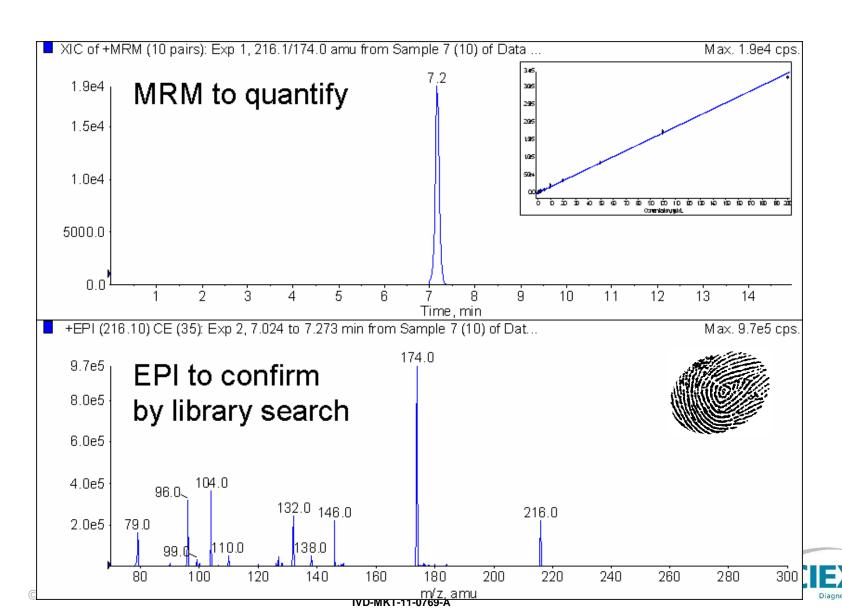
Created with ClearCore™ MD 1.0 – Quantitation Reporter Printed: 12/06/2014 2:41:14 PM


Per Sample Report

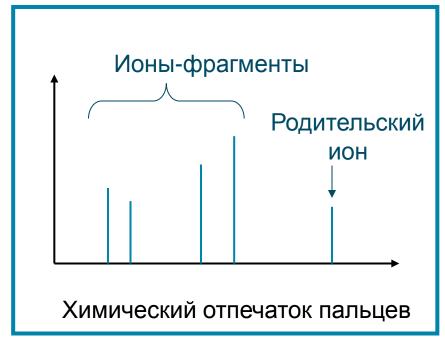
Sample: High control

Sample				
Data File		Date		
Sample Number	1	Vial	85	
Sample Type		Plate	1	
Processing				
Method				

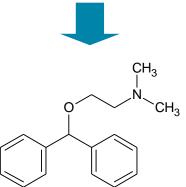
TestName	Result	Units	Qualifier	LCL	UCL
Alanine	564.121	μM	PASSED	301	1073
Aspartic acid	219.214	μM	PASSED	199	402
Arginine	116.687	μM	PASSED	88	255
Citruline	217.906	μM	PASSED	200	343
Glutamic acid	520.168	μM	PASSED	476	908
Glycine	378.808	μM	FAILED_TOO_LOW	641	1184
Leucine	411.888	μM	PASSED	355	712
Methionine	178.572	μM	PASSED	92	368
Omithine	426.593	μM	PASSED	316	693
Phenylalanine	377.894	μM	PASSED	325	730
Tyrosine	422.728	μM	PASSED	353	679
Valine	276.157	μM	PASSED	275	564
C2-Camtine	59.929	μM	PASSED	41.8	93.2
C3-Camitine	12.188	μM	PASSED	9.49	19.8
C4-Camitine	4.116	μM	PASSED	2.49	6.05
C5-Camitine	1.902	μM	PASSED	1.36	3.46
C5-DC-Camitine	3.569	μM	PASSED	1.07	3.58
C6-Camine	1.867	μM	PASSED	1.39	2.98
C8-Camitine	2.037	μM	PASSED	1.47	3.33
C10-Carritine	1.889	μM	PASSED	1.33	3.51
C12-Carritine	1.849	μM	PASSED	1.48	3.04
C14-Carritine	1.812	μM	PASSED	1.32	3.12
C16-Camitine	11.866	μM	PASSED	8.03	18.2
C18-Carritine	7.406	μM	PASSED	4.79	12.9
alanine/arginine ratio	4.834	T T	PASSED	0	00



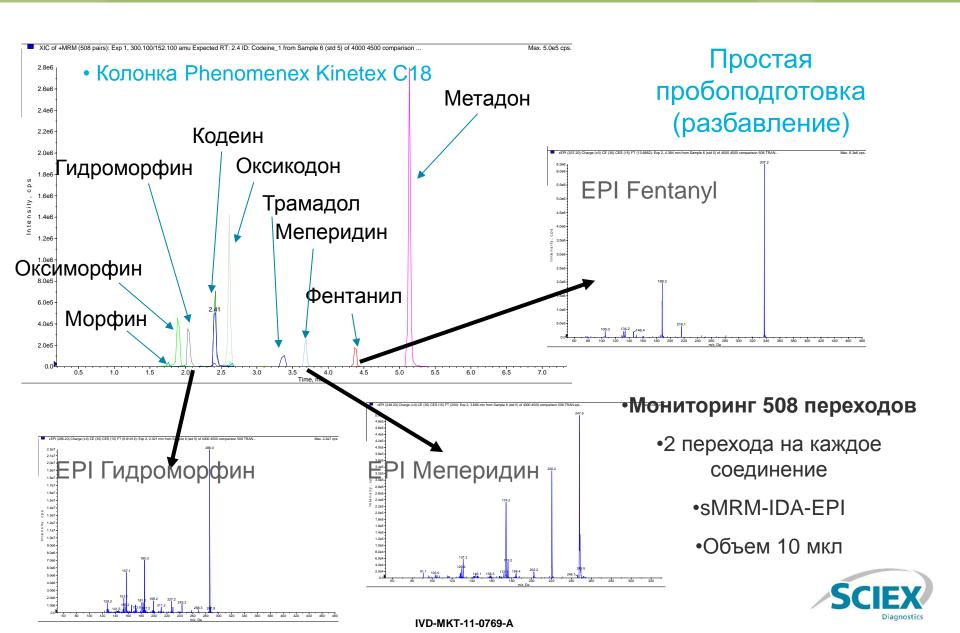
Химико-токсикологический анализ



Скрининг и <u>Количественный анализ</u> на основе МРМ + Подтверждение на основе библиотек



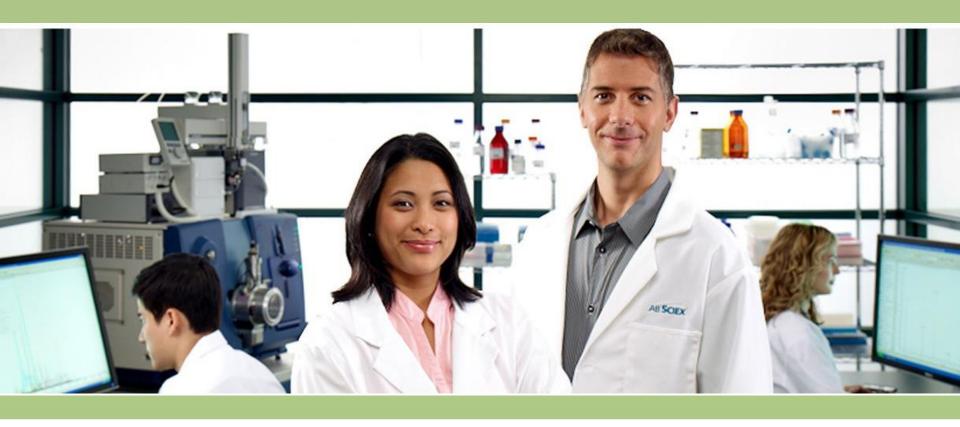
Подтверждение с помощью ВЭЖХ/МС библиотек



Анализ мочи на наркотики с помощью системы QTRAP® 4500

Обзор методов тандемной масс-спектрометрии для клиники

НБО Биомаркеры Токсикология Лекарственный мониторинг Поиск неизвестных Стероиды 30-40 заболеваний, токсикантов связанных с НБО T3/T4 Иммуносупрессоры (в т.ч. при острых отравлениях) Витамин Д Антиретровирусны Идентификация Гомоцистеин препараты наркотических и Желчные кислоты контролируемых **Антиконвульсанты** препаратов Метанефрины Нейролептики Обезболивающие Катехоламины препараты Бензодиазепины Онкологические Опиаты биомаркеры Бензодиазепины


Выводы

- Тандемная масс-спектрометрия универсальная технология большим потенциалом применения В клинических лабораториях
- Масс-спектрометрия является альтернативой иммунохимическим методам ПОВЫСИТЬ И позволяет достоверность, снизить издержки, СНИЗИТЬ количество выполняемых анализов
- Технология AB SCIEX разработана с учетом обширного опыта в области клинических исследований, что дает уверенность успешном внедрении в клиническую В лабораторную диагностику масс-спектрометров 3200MD™ & 3200MD QTRAP®, 4500MD и наборов реагентов

Потому что достоверные клинические результаты стоят того

Questions and Answers

